KATWA COLLEGE

B.Sc 5th Sem Internal Assessment Examination-2019

Subject : Physics

Paper : CC-XI(H)

Time :30 minutes

FM-10

Answer any five question:

- a) Find the commutator $[\hat{A}, \hat{B}]$ where $\hat{A} = x^3$ and $\hat{B} = x \frac{d}{dx}$.
- b) The operator $(x + \frac{d}{dx})$ has the eigen value α . Derive the corresponding eigenfunction.
- c) i> A wave function Ψ(r,t) is admissible if
 (p) Ψ is single-valued and finite (q) Ψ is finite
 (r)Ψ is single-valued (s) Ψ is finite and multivalue

ii> Which of the wave function is the solution of Schrödinger equestiona

(p) A Sec(x) (q) A $exp(-x^2)$ (r) A tan(x) (s) A $exp(x^2)$

- d) A plane wave is given by the wave function $\Psi(x)=Ae^{ikx}$ in onedimension.Find the probability current density.
- e) If $\Psi_1(x,t)$ and $\Psi_2(x,t)$ are both the solutions of Schrödinger's wave equation for a given potential V(x,t), then show that $\Psi = a_1 \Psi_1 + a_2 \Psi_2$ in which a_1 and a_2 are arbitrary constants is also a solution.
- f) The wavefunction of a particle constraint to move along $x(-\infty < x < +\infty)$ at a certain instant is given by $\Psi(x) = Ae^{-\frac{x^2}{a^2} + ibx}$ [a,b are real constants]. Find the normalization constant A.
- g) Find the expectation value of the momentum of a particle free to move in a onedimensional space of zero potential from $x=-\infty$ to $+\infty$.